
Analysis of Partitioned Global Address Space Programs

by Amir Kamil

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor K. Yelick
Research Advisor

(Date)

* * * * * * *

Professor S. Graham
Second Reader

(Date)

Abstract

The introduction of multi-core processors by the major microprocessor vendors has brought parallel programming
into the mainstream. Analysis of parallel languages is critical both for safety and optimization purposes. In this
report, we consider the specific case of languages with barrier synchronization and global address space abstractions.
Two of the fundamental problems in the analysis of parallel programs are to determine when two statements in a
program can execute concurrently, and what data can be referenced by each memory location. We present an efficient
interprocedural analysis algorithm that conservatively computes the set of all concurrent statements, and improve its
precision by using context-free language reachability to ignore infeasible program paths. In addition, we describe a
pointer analysis using a hierarchical machine model, which distinguishes between pointers that can reference values
within a thread, within a shared memory multiprocessor, or within a network of processors. We then apply the analyses
to two clients, data race detection and memory model enforcement. Using a set of five benchmarks, we show that both
clients benefit significantly from the analyses.

1 Introduction

The introduction of multi-core processors by the major microprocessor manufacturers marks a dramatic shift in soft-
ware development: parallelism for laptops and desktop machines will no longer be hidden within a micro-architecture,
but will be exposed to higher level software. Most parallel code for small-scale machines is written using a shared
memory programming model. Though the high end is dominated by message passing, there are currently several ef-
forts to provide a global address space abstraction across shared and distributed memory machines, in which each
thread can access data on any other thread. The global address space languages include Unified Parallel C (UPC)
[13, 48], Co-Array Fortran (CAF) [45], Titanium [53, 25] (based on Java [23]), and the HPCS languages under devel-
opment by Cray (Chapel [16]), IBM (X10 [42]), and Sun (Fortress [3]). Analysis of these parallel languages is critical
both for safety and optimization purposes.

We present two analyses for the specific case ofpartitioned global address space(PGAS) programs with barrier
synchronization. In such programs, the memory space is partitioned into multiple localities. While each thread can
access data anywhere in the global address space, access to its own locality is much faster than elsewhere. Programs
written in the PGAS model exploit this by concentrating each thread’s computation on data within its own locality.

We first introduce aninterprocedural concurrency analysis, which captures information about the potential con-
currency between statements in a program. We construct aconcurrency graphrepresentation of a program and present
a simple algorithm that uses it to determine the set of all potentially concurrent expressions in a program. This analysis
proves too conservative, however, and we improve its precision by performing a context-free language analysis on a
modified form of the concurrency graph. We prove the correctness of both analyses and show that their total running
times are quadratic in the size of the input program.

We also present a pointer analysis that is designed for a PGAS setting. The analysis takes into account a hierarchical
machine model, in which a pointer may be valid only within a subset of processors in the hierarchy. For example, a
pointer may refer to data only within a single thread, or to data associated with any threads within an SMP node, or
to any thread in the machine. We develop a model language,Ti, for presenting our pointer analysis and provide a type
system for the language.Ti has the essential features of any PGAS language: the ability to create references to data,
share references with other machines in the system, and dereference them for either read or write access.Ti also has a
hierarchical machine model, a feature that is also available (although less general) in many PGAS languages.

We implement the analyses in a compiler for the Titanium language [53], a single program, multiple data global
address space dialect of Java that runs on most parallel and distributed memory machines. The analyses can be used by
many clients, including locality inference [33] and data sharing inference [34]. In this report, we consider two clients in
particular. We first use them to performdata race analysis[36], which can be used to report potential program errors to
application programmers. We then use the analyses to enforce asequentially consistent memory model[30], a stronger
and more intuitive memory model than is normally provided by parallel languages. Using a set of test programs, we
demonstrate that both clients benefit significantly from the analyses.

1

2 Background

We implement the analyses in a compiler for the Titanium programming language, and modify two clients to leverage
the results. In this section, we present an overview of Titanium and the features relevant to the analyses. We also
discuss how the two clients can take advantage of the analyses in order to produce better results.

2.1 Titanium

Titanium is a dialect of Java and contains most of the features of Java 1.4. In addition, it provides language features
for parallel and scientific programming. These include multidimensional arrays and index spaces, immutable classes,
region-based memory allocation [2, 22], C++-style templates, operator overloading, and barrier synchronization. In
this report, we discuss only those features that are relevant to our analyses.

The Titanium compiler does not use the Java Virtual Machine model. Instead, the end target is assembly code. For
portability, Titanium is first translated into C and then compiled into an executable. In addition to generating C code to
run on each processor, the compiler generates calls to a runtime layer based on GASNet [10], a lightweight communi-
cation layer that exploits hardware support for direct remote reads and writes when possible. Titanium runs on a wide
range of platforms including uniprocessors, shared memory machines, distributed-memory clusters of uniprocessors
or SMPs, and a number of specific supercomputer architectures (Cray X1, Cray T3E, SGI Altix, IBM SP, Origin 2000,
and NEC SX6).

2.1.1 Textually Aligned Barriers

Titanium uses a different model of parallelism than Java. Instead of having dynamically created threads, Titanium is a
single program, multiple data(SPMD) language, so the number of threads is fixed at program startup and all threads
execute the same code image.

Like many SPMD languages, Titanium has abarrier construct that forces threads to wait at the barrier until all
threads have reached it. Aiken and Gay introduced the concept ofstructural correctnessto enforce that all threads
execute the same number of barriers, and developed a static analysis that determines whether or not a program is
structurally correct [1, 21]. The following code is not structurally correct:

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads

else
; // odd ID threads

Titanium provides a stronger guarantee oftextually aligned barriers: not only do all threads execute the same number
of barriers, they also execute the sametextualsequence of barriers. Thus, both the above structurally incorrect code
and the following structurally correct code are erroneous in Titanium:

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads

else
Ti.barrier(); // odd ID threads

The fact that Titanium barriers are textually aligned is central to our concurrency analysis: not only does it guarantee
that code before and after each barrier cannot run concurrently, it also guarantees that code immediately following two
different barriers cannot execute simultaneously.

Titanium’s type system ensures that barriers are textually aligned by making use ofsingle-valuedexpressions [1].
Such expressions provably evaluate to the same value for all threads1, and include the following:

• compile-time constants

1In the case of single-valued expressions of reference type, the result is not the same but isreplicated and coherent. See the Titanium language
reference for details [25].

2

Fig. 1: The Titanium thread hierarchy. The thin, blue arrows signify local pointers, while the thick, red arrows designate
global pointers. Global pointers may point to local data.

• program arguments

• certain library functions, such asTi.numProcs() , which returns the total number of threads

• expressions that are combinations of the above

Other expressions such as those involving references and method calls can also be single-valued, the details of which
can be found in the Titanium reference manual [25].

Barrier alignment can only be violated if different threads take different program paths, and any of those paths
contain a barrier. Titanium statically prevents this by requiring path forks, including conditionals, loops, and dynami-
cally dispatched method calls, to be conditioned on single-valued expressions if any of the branches contains a barrier.
This guarantees that all threads take the same branch and therefore execute the same barriers. The examples above are
erroneous: they each have branches with barriers butTi.thisProc() % 2 == 0 is not single-valued, so not all
threads take the same branch. If the condition was replaced by the single-valued expressionTi.numProcs() % 2
== 0, then both examples would become legal.

In addition to the existing barriers in a program, our concurrency analysis also exploits single-valued expressions
to determine which conditional branches can run concurrently. The analysis does not insert any new barriers, and it
ignores the lock-basedsynchronized construct of Java, which is rarely used in Titanium programs.

2.1.2 Memory Hierarchy

Titanium has a global address space abstraction, so that any thread can directly access memory on another thread. At
runtime, two threads may share the same physical address space, in which case such an access is done directly using
load and store instructions, or they may be in distinct address spaces, in which case the global access must be translated
into communication through the GASNet communication layer.

In addition to dereferencing, communication between threads can be done through the one-to-allbroadcastand
the all-to-allexchangeoperations. Local and static variables are not shared between threads, so they cannot be used
for communication.

Since threads can share a physical address space, they are arranged in the following three-level hierarchy, as shown
in Figure1:

• Level 1: an individual thread

• Level 2: threads within the same physical address space

• Level 3: all threads

In the Titanium type system, variables are implicitlyglobal, meaning that they can point to a location on any thread
(level 3). A programmer can restrict a variable to only point within a physical address space (level 2) by qualifying
it with the local keyword. In Figure1, the thin (blue) pointers are local, while the thick (red) pointers are global.
Titanium allows downcasts between global and local, but they only succeed if the actual location referenced is within
the same physical address space as the executing thread. In Figure1, a downcast ofw to local would succeed, since the

3

referenced memory is on the same thread, while a downcast ofy would fail. Our analysis takes advantage of existing
downcasts in a program in determining what variables must reference data in the same address space.

The Titanium type system does not separate levels 1 and 2 of the hierarchy. The distinction between 1 and 2 is
important for both race detection and sequential consistency enforcement, since references to level 1 values on different
threads cannot be to the same location. Sequential consistency enforcement can also benefit from the distinction
between levels 2 and 3 by using cheaper barriers if a memory access on one thread can only conflict with an access
from another thread in the same physical address space, though we do not use this here. Locality analysis can also
benefit from this distinction, as shown in§B.4.1.

Theoretically, we could perform a two-level analysis twice to obtain a three-level analysis, but as shown in§B.3.3,
the three-level analysis we have implemented is much more efficient. Thus, we would like a pointer analysis that
accounts for all levels in the hierarchical distribution of Titanium threads. Our analysis is general enough to handle an
arbitrary number of levels, which could be useful for systems and languages with more than three levels.

2.2 Applications

We evaluate our analyses by applying them to two clients, static race detection and enforcement of sequential consis-
tency. Both clients require concurrency and pointer analyses in order to be effective.

2.2.1 Static Race Detection

In parallel programs, adata raceoccurs when multiple threads access the same memory location, at least one of the
accesses is a write, and the accesses can occur concurrently [36]. Data races often correspond to programming errors
and potentially result in non-deterministic runtime behavior. Concurrency analysis can determine which accesses can
occur concurrently, and pointer analysis [4] can determine which accesses are to the same location.

2.2.2 Sequential Consistency

For a sequential program, compiler and hardware transformations must not violate data dependencies: the order of
all pairs of conflicting accesses must be preserved. Two memory accessesconflict if they access the same memory
location and at least one of them is a write. The execution model for parallel programs is more complicated, since
each thread executes its own portion of the program asynchronously and there is no predetermined ordering among
accesses issued by different threads to shared memory locations. A memory consistency model defines the memory
semantics and restricts the possible execution order of memory operations.

Titanium’s memory consistency model is defined in the language specification [25]. Here are some informal prop-
erties of the Titanium model.

1. Locally sequentially consistent:All reads and writes issued by a given thread must appear to that thread to
occur in exactly the order specified. Thus, dependencies within a thread must be observed.

2. Globally consistent at synchronization events:At a global synchronization event such as a barrier, all threads
must agree on the values of all the variables. At a non-global synchronization event, such as entry into a critical
section, the thread must see all previous updates made using that synchronization event.

Henceforth, we will refer to the Titanium memory consistency model as therelaxed model.
A simpler memory model,sequential consistency, is the most intuitive for the programmer. The sequential con-

sistency model states that a parallel execution must behave as if it were an interleaving of the serial executions by
individual threads, with each individual execution sequence preserving the program order [30].

An easy way to enforce sequential consistency is to insert memory barriers after each shared memory access. This
forbids all reordering of shared memory operations, preventing optimizations such as prefetching and code motion
and resulting in an unacceptable performance penalty. Various techniques, such ascycle detection[44, 29], have been
proposed to minimize the number of barriers, ordelay set, required to enforce sequential consistency. Our prior work
with Su and Yelick, however, has shown that the delay set can be precisely approximated by inserting memory barriers
around each memory access that may be part of a race condition [27].

4

Fig. 2: Construction of the interprocedural control flow graph of a program from the individual method flow graphs.

3 Concurrency Analysis

A precise knowledge of the set of concurrent statements in parallel programs is fundamental to many analyses and
optimizations. In this section, we develop a basic analysis to determine this set. We then improve on its results by only
considering program paths that can occur at runtime.

3.1 Analysis Background

Our concurrency analyses do not operate directly on Titanium program’s source code, but on a graph representation of
a reduced form of the program, in order to simplify both the theory and implementation of the analyses.

3.1.1 Intermediate Language

We operate on anintermediate languagethat allows the full semantics of Titanium but is simpler to analyze. In
particular, we rewrite dynamic dispatches as conditionals. A callx.foo() , wherex is of typeA in the class hierarchy

class A {
void foo() { ... }

}

class B extends A {
void foo() { ... }

}

gets rewritten to

if ([type of x is A])
x.A$foo();

else if ([type of x is B])
x.B$foo();

We also rewriteswitch statements and conditional expressions (...? ... : ...) as conditionalif ... else
... statements.

3.1.2 Control Flow Graphs

The concurrency algorithms are whole-program analyses that operate over acontrol flow graphthat represents the flow
of execution in a program. Nodes in the graph correspond to expressions in the program, and a directed edge from one
expression to another occurs when the target can execute immediately after the source.

The Titanium compiler produces an intraprocedural control flow graph for each method in a program. We modify
each of these graphs to model transfer of control between methods by splitting each method invocation node into a

5

Algorithm 3.3.
ConcurrencyGraph(P : program) : graph

1. LetG be the interprocedural control flow graph ofP , as described in§3.1.2.
2. For each conditionalC in P {
3. If C is not a single conditional:
4. Add a cross edge forC in G.
5. } // End for (2).
6. For each barrierB in P :
7. Delete the node forB and its adjacent edges fromG.
8. ReturnG.

Fig. 3: Algorithm3.3computes the concurrency graph of a program by inserting cross edges into its control flow graph
and deleting all barriers.

call node and a return node. The incoming edges of the original node are attached to the call node, and the outgoing
edges to the return node. An edge is added from the call node to the target method’s entry node, and from the target
method’s exit node to the return node. Figure2 illustrates this procedure. We also add edges to model interprocedural
control flow due to exceptions.

3.2 Basic Analysis

Titanium’s structural correctness allows us to develop a simple graph-based algorithm for computing concurrent ex-
pressions in a program. The algorithm specifically takes advantage of Titanium’s textually aligned barriers and single-
valued expressions. The following definitions are useful in developing the analysis:

Definition 3.1 (Single Conditional).A single conditionalis a conditional guarded by a single-valued expression.

Since a single-valued expression provably evaluates to the same result on all threads, every thread is guaranteed
to take the same branch of a single conditional. A single conditional thus may contain a barrier, since all threads are
guaranteed to execute it, while a non-single conditional may not.

Definition 3.2 (Cross Edge).A cross edgein a control flow graph connects the end of the first branch of a conditional
to the start of the second branch.

Cross edges do not provide any control flow information, since the second branch of a conditional does not execute
immediately after the first branch. They are, however, useful for determining concurrency information, as shown in
Theorem3.4.

In order to determine the set of concurrent expressions in a program, we construct aconcurrency graphG of the
programP by inserting cross edges in the interprocedural control flow graph ofP for every non-single conditional
and deleting all barriers and their adjacent edges. Algorithm3.3 in Figure3 illustrates this procedure. The algorithm
runs in time O(n), wheren is the number of statements and expressions inP , since it takes O(n) time to construct the
control flow graph of a program. The control flow graph is very sparse, containing only O(n) edges, since the number
of expressions that can execute immediately after a particular expressione is constant. Since at mostn cross edges are
added to the control flow graph and at most O(n) barriers and adjacent edges are deleted, the resulting graphG is also
of size in O(n).

The concurrency graphG allows us to determine the set of concurrent expressions using the following theorem:

Theorem 3.4. Two expressionsa and b in P can run concurrently only if one is reachable from the other in the
concurrency graphG.

In order to prove Theorem3.4, we require the following definition:

Definition 3.5 (Code Phase).Thecode phaseof a barrier is the set of expressions that may execute after the barrier
but before hitting another barrier, including itself2.

6

B1: Ti.barrier();
L1: int i = 0;
L2: int j = 1;
L3: if (Ti.thisProc() < 5)
L4: j += Ti.thisProc();
L5: if (Ti.numProcs() >= 1) {
L6: i = Ti.numProcs();
B2: Ti.barrier();
L7: j += i;
L8: } else { j += 1; }
L9: i = broadcast j from 0;
B3: Ti.barrier();
L10: j += i;

Code Phase Statements
B1 L1 , L2 , L3 , L4 , L5 , L6 , L8 , L9
B2 L7 , L9
B3 L10

Fig. 4: The set of code phases for an example program.

Algorithm 3.7.
ConcurrentExpressions(P : program) : set

1. Letconcur ← ∅.
2. LetG← ConcurrencyGraph(P) [Algorithm 3.3].
3. For each accessa in P {
4. Do a depth first search onG starting froma.
5. For each expressionb reached in the search:
6. Insert(a, b) into concur.
7. } // End for (3).
8. Returnconcur.

Fig. 5: Algorithm3.7computes the set of all pairs of concurrent expressions in a given program.

Figure 4 shows the code phases of an example program. Since each code phase is preceded by a barrier, and
each thread must execute the same sequence of barriers, each thread executes the same sequence of code phases. This
implies the following:

Lemma 3.6. Two expressionsaandb in P can run concurrently only if they are in the same code phase.

Using Lemma3.6, we can prove Theorem3.4. Details are in§A.1.1.
By Theorem3.4, in order to determine the set of all pairs of concurrent expressions, it suffices to compute the pairs

of expressions in which one is reachable from the other in the concurrency graphG. This can be done efficiently by
performing a depth first search from each expression inG. Algorithm 3.7 in Figure5 does exactly this. The running
time of the algorithm is dominated by the depth first searches, each of which takes O(n) time, sinceG has at mostn
nodes and O(n) edges. At mostn searches occur, so the algorithm runs in time O(n2).

3.3 Feasible Paths

Algorithm 3.7 computes an over-approximation of the set of concurrent expressions. In particular, due to the nature
of the interprocedural control flow graph constructed in§3.1.2, the depth first searches in Algorithm3.7 can follow
infeasible paths, paths that cannot structurally occur in practice. Figure6 illustrates such a path, in which a method is
entered from one context and exits into another.

In order to prevent infeasible paths, we follow the procedure outlined by Reps [40]. We label each method call
edge and corresponding return edge with matching parentheses, as shown in Figure6. Each path then corresponds to a
string of parentheses composed of the labels of the edges in the path. A path is then infeasible, if in its corresponding
string, an open parenthesis is closed by a non-matching parenthesis.

2A statement can be in multiple code phases, as is the case for a statement in a method called from multiple contexts.

7

Fig. 6: Interprocedural control flow graph for two calls to the same function. The dashed path is infeasible, since
foo() returns to a different context than the one from which it was called. The infeasible path corresponds to the
unbalanced string “[}”.

Fig. 7: Feasible paths that correspond to unbalanced strings. The dashed path on the left corresponds to a method call
that has not yet returned, and the one on the right corresponds to a path that starts in a method call that returns.

It is not necessary that a path’s string be balanced in order for it to be feasible. In particular, two types of unbalanced
strings correspond to feasible paths:

• A path with unclosed parentheses. Such a path corresponds to method calls that have not yet finished, as shown
in the left side of Figure7.

• A path with closing parentheses that follow a balanced prefix. Such a string is allowed since a path may start in
the middle of a method call and corresponds to that method call returning, as shown in the right side of Figure
7.

Determining the set of nodes reachable3 using a feasible path is the equivalent of performing context-free language
(CFL) reachability on a graph using the grammar for each pair of matching parentheses(α and)α. CFL reachability
can be performed in cubic time for an arbitrary grammar [40]. Algorithm 3.7 takes only quadratic time, however, and
we desire a feasibility algorithm that is also quadratic. In order to accomplish this, we develop a specialized algorithm
that modifies the concurrency graphG and the standard depth first search instead of using generic CFL reachability.

At first glance, it appears that a method must be revisited in every possible context in which it is called, since the
context determines which open parentheses have been seen and therefore which paths can be followed. However, as
shown in§A.1.2, the set of expressions that can be executed in a method call is the same regardless of context. This
implies that the set of nodes reachable along a feasible path in a program’s control flow graph is also independent of
the context of a method call, with two exceptions:

• If a method call can complete, then the nodes after the call are reachable from a point before the call.

3In this section, we make no distinction betweenreachableandreachable without hitting a barrier. The latter reduces to the former if all barrier
nodes are removed from each control flow graph.

8

Algorithm 3.8.
ComputeBypasses(P : program,G1, . . . , Gk : intraprocedural flow graph) : set

1. Letchange← true.
2. Letmarked← ∅.
3. Whilechange = true {
4. change← false.
5. Setvisited(u)← false for all nodesu in G1, . . . , Gk.
6. For each methodf in P {
7. If f 6∈ marked andCanReach(entry(f), exit(f), Gf , marked) {
8. marked← marked ∪ {f}.
9. change← true.

10. } // End if (7).
11. } // End for (6).
12. } // End while (3).
13. Returnmarked.

14. ProcedureCanReach(u, v : vertex,G : graph,marked : method set) : boolean:
15. Setvisited(u)← true.
16. If u = v:
17. Returntrue.
18. Else Ifu is a method call to functiong andg 6∈ marked:
19. Returnfalse.
20. For each edge(u, w) ∈ G {
21. If visited(w) = false andCanReach(w, v, G, marked):
22. Returntrue.
23. } // End for (20).
24. Returnfalse.

Fig. 8: Algorithm3.8uses each method’s intraprocedural control flow graph (Gi) to determine if its exit is reachable
from its entry.

• If no context exists, such as in a search that starts from a point within a methodf , then all nodes that can be
reached from the return node of any method call tof are reachable.

The second case above can easily be handled by visiting a node twice: once insomecontext, and again in no context.
The first case, however, requires adding bypass edges to the control flow graph.

3.3.1 Bypass Edges

Recall that the interprocedural control flow graph was constructed by splitting a method call into a call node and a
return node. An edge was then added from the call node to the target method’s entry, and another from the target’s
exit to the return node. If the target’s exit is reachable (or for our purposes, reachable without hitting a barrier) from
the target’s entry, then adding abypass edgethat connects the call node directly to the return node does not affect the
transitive closure of the graph.

Computing whether or not a method’s exit is reachable from its entry is not trivial, since it requires knowing
whether or not the exits of each of the methods that it calls are reachable from their entries. Algorithm3.8 in Figure8
computes this by continually iterating over all the methods in a program, marking those that can complete through an
execution path that only calls previously marked methods, until no more methods can be marked. In the first iteration
of loop 3, it only marks those methods that can complete without making any calls, or equivalently, those methods that
can complete using only a single stack frame. In the second iteration, it only marks those that can complete by calling
only methods that don’t need to make any calls, or equivalently, those methods that can complete using only two stack

9

Algorithm 3.9.
FeasibleSearch(v : vertex,G : graph) : set

1. Letvisited← ∅.
2. Lets← ∅.
3. CallFeasibleDFS(v, G, s, visited).
4. Returnvisited.

5. ProcedureFeasibleDFS(v : vertex,G : graph,s : stack,visited : set):
6. If s = ∅ {
7. If no context mark(v) return.
8. Setno context mark(v)← true.
9. } // End if (6).

10. Else{
11. If context mark(v) return.
12. Setcontext mark(v)← true.
13. } // End else (10).
14. visited← visited ∪ {v}
15. For each edge(v, u) ∈ G {
16. Lets′ ← s.
17. If label(v, u) is a close symbol ands′ 6= ∅ {
18. Leto← pop(s′).
19. If label(v, u) does not matcho:
20. Skip to next iteration of 15.
21. } // End if (17).
22. Else iflabel(v, u) is an open symbol:
23. Pushlabel(v, u) ontos′.
24. CallFeasibleDFS(u, G, s′).
25. } // End for (15).

Fig. 9: Algorithm3.9computes the set of nodes reachable from the start node through a feasible path.

frames. In general, a method is marked in theith iteration if it can complete usingi, and no less thani, stack frames4.
As shown in§A.1.3, Algorithm 3.8marks all methods that can complete using any number of stack frames.

Algorithm 3.8requires quadratic time to complete in the worst case. Each iteration of loop 3 visits at mostn nodes.
Only k iterations are necessary, wherek is the number of methods in the program, since at least one method is marked
in all but the last iteration of the loop. The total running time is thus O(kn) in the worst case. In practice, only a small
number of iterations are necessary5, and the running time is closer to O(n).

After computing the set of methods that can complete, it is straightforward to add bypass edges to the concurrency
graphG: for each method callc, if the target ofc can complete, add an edge fromc to its corresponding method return
r. This can be done in time O(n).

3.3.2 Feasible Search

Once bypass edges have been added to the graphG, a modified depth first search can be used to find feasible paths.
A stack of open but not yet closed parenthesis symbols must be maintained, and an encountered closing symbol must
match the top of this stack, if the stack is nonempty. In addition, as noted above, the modified search must visit each
node twice, once in no context and once insomecontext. Algorithm3.9in Figure9 formalizes this procedure, and we
prove that it does not follow infeasible paths in§A.1.4.

4Note that just because a method only requires a fixed number of stack frames doesn’t mean that it can complete. A method may contain an
infinite loop, preventing it from completing at all, or barriers along all paths through it, preventing it from completing without executing a barrier.
Algorithm 3.8does not mark such methods.

5Even on the largest example we tried (>45,000 lines of user and library code, 1226 methods), Algorithm3.8 required only five iterations to
converge.

10

Algorithm 3.10.
FeasibleConcurrentExpressions(P : program) : set

1. LetG← ConcurrencyGraph(P) [Algorithm 3.3].
2. For each methodf in P {
3. Construct the intraprocedural flow graphGf of f .
4. For each barrierB in f {
5. DeleteB from Gf .
6. } // End for (4).
7. } // End for (2).
8. Letbypass← ComputeBypasses(P , G1, . . . , Gk) [Algorithm 3.8].
9. For each method call and return pairc, r in P {

10. If the targetf of c, r is in bypass:
11. Add an edge(c, r) to G.
12. } // End for (9).
13. For each expressiona in P {
14. Letvisited← FeasibleSearch(a, G) [Algorithm 3.9].
15. For each expressionb ∈ visited:
16. Insert(a, b) into concur.
17. } // End for (13).
18. Returnconcur.

Fig. 10: Algorithm3.10computes the set of all concurrent expressions that can feasibly occur in a given program.

SinceG contains bypass edges and Algorithm3.9visits each node both in some context and in no context, it finds
all nodes that can be reachable in a feasible path from the source. Since it visits each node at most twice, it runs in
time O(n).

3.3.3 Feasible Concurrent Expressions

Putting it all together, we can now modify Algorithm3.7 to find only concurrent expressions that are feasible. As
in Algorithm 3.7, the concurrency graphG must first be constructed. Then the intraprocedural flow graphs of each
method must be constructed, Algorithm3.8 used to find the methods that can complete without hitting a barrier, and
the bypass edges inserted intoG. Then Algorithm3.9must be used to perform the searches instead of a vanilla depth
first search. Algorithm3.10in Figure10 illustrates this procedure.

The setup of Algorithm3.10calls Algorithm3.8, so it takes O(kn) time. The searches each take time in O(n), and
at mostn are done, so the total running time is in O(kn + n2) = O(n2), quadratic as opposed to the cubic running
time of generic CFL reachability.

4 Pointer Analysis

Given a program, it is useful to know the locations that each variable and memory location can reference. We would
like to produce a points-to analysis [4] in order to produce this information.

4.1 Analysis Background

We define a machine6 hierarchy and a simple language as the basis of our analysis. This allows the analysis to be
applied to languages besides Titanium, and it avoids language constructs that are not crucial to the analysis. While the
language we use is SPMD, the analysis can easily be extended to other models of parallelism, though we do not do so
here.

6Throughout this report, we will usemachineinterchangeably withthread.

11

Fig. 11: A possible machine hierarchy with four levels. The width of arrows and their labels indicate the hierarchy
distance between the endpoints.

n ::= integer literals

x ::= variables

τ ::= int | refn τ (types)

e ::= n | x | newl τ | ∗ e | convert(e, n)

| transmit e1 from e2 | e1; e2

| x := e | e1 ← e2 (expressions)

Fig. 12: The syntax of theTi language.

expand(τ, n) ≡

(
refmax(m,n) τ ′ if τ = refmτ ′

τ otherwise

robust(τ, n) ≡

(
false if τ = refmτ ′ ∧ m < n

true otherwise

Fig. 13: Type manipulating functions.

Γ ` n : int Γ ` newl τ : ref1 τ

Γ(x) = τ

Γ ` x : τ

Γ ` e : refn τ

Γ ` ∗ e : expand(τ, n)

Γ ` e : refn τ

Γ ` convert(e, m) : refm τ

Γ ` e1 : τ Γ ` e2 : int

Γ ` transmit e1 from e2 : expand(τ, h)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` e1; e2 : τ2

Γ ` e : τ Γ(x) = τ

Γ ` x := e : τ

Γ ` e1 : refn τ Γ ` e2 : τ robust(τ, n)

Γ ` e1 ← e2 : τ

Γ ` e : refn τ n < m

Γ ` e : refm τ

Fig. 14: Type checking rules.

4.1.1 Machine Structure

Consider a set of machines arranged in an arbitrary hierarchy with the machines as leaves, such as that of Figure11.
A machinecorresponds to a single execution stream within a parallel program, and for the purposes of our analysis,
we ignore physical address spaces. Each machine has a correspondingmachine number. Thedepthof the hierarchy is
the number of levels it contains. Thedistancebetween machines is equal to the level of the hierarchy containing their
least common ancestor. A pointer on a machinem has a correspondingwidth, and it can only refer to locations on
machines whose distance fromm is no more than the pointer’s width.

4.1.2 Language

Our analysis is formalized using a simple language, calledTi, that illustrates the key features of the analysis.Ti is a
generalization of the language used by Liblit and Aiken in their work on locality inference [33]. Like Titanium, Ti
uses a SPMD model of parallelism, so that all machines execute the same program text. The height of the machine
hierarchy is known statically, and we will refer to it ash from here on. References thus can have any width in the range
[1, h].

12

Fig. 15: Dereferences may require width expansion.
The arrow labels correspond to pointer widths.

Fig. 16: The assignmenty ← z is forbidden, since the
location referred to byy can only hold pointers of width
1 but requires a pointer of width 2 to refer toz.

The syntax ofTi is summarized in Figure12. Types can be integers or reference types. The latter are parameterized
by a widthn, in the range[1, h]. Expressions inTi consist of the following

• integer literals (n)

• variables (x). We assume a fixed set of variables of predefined type. We also assume that variables are machine-
private.

• reference allocations (newl τ). The expressionnewl τ allocates a memory cell of typeτ and returns a reference
to the cell. Each allocation site has a unique labell.

• dereferencing (∗e)

• type conversions (convert(e, n)), which widen or narrow the width of an expression, converting its type from
refm τ to refn τ .

• communication (transmit e1 from e2). The expressiontransmit e1 from e2 evaluatese1 on machinee2 and
transmits the result to all other machines.

• sequencing (e1; e2)

• assignment to variables (x := e)

• assignment through references (e1 ← e2). In e1 ← e2, e2 is written into the location referred to bye1.

For simplicity, Ti does not have conditional statements. Since the analysis is flow-insensitive, conditionals are not
essential to it.

The type checking rules forTi are summarized in Figure14. The rules for integer literals, variables, sequencing,
and variable assignments are straightforward.

The allocation expressionnewl τ produces a reference typeref1 τ of width 1, since the allocated memory is
guaranteed to be on the machine that is performing the allocation. Pointer dereferencing is more problematic, however.
Consider the situation in Figure15, wherex on machine 0 refers to a location on machine 0 that refers to a location
on machine 1. This implies thatx has typeref1 ref2 τ . The result of∗x should be a reference to the location on
machine 1, so it must have typeref2 τ . In general, a dereference of a value of typerefa refb τ produces a value of
typerefmax(a,b) τ .

The convert expression allows the top-level width of an expression to be up or downcast. Upcasts are rarely
used due to the subtyping rule below. A programmer can use downcasts to inform the compiler that the reference is
to data residing on a machine closer than the original width, such as after a dynamic check that this is the case. The
resulting type is the same as the input expression, but with the provided top-level width.

In the transmit expression, if the value to be communicated is an integer, then the resulting type is still an
integer. If the value is a reference, however, the result must be promoted to the maximum widthh, since the relationship
between source and destination is not statically known.

13

The typing rule for the assignment through reference expression is also nontrivial. Consider the case wherey has
typeref2 ref1 τ , as in Figure16. Should it be possible to assign toy with a value of typeref1 τ? Such a value must
be on machine 0, but the location referred to byx is on machine 1. Since that location holds a value of typeref1 τ ,
it must refer to a location on machine 1. Thus, the assignment should be forbidden. In general, an assignment to a
reference of typerefa refb τ should only be allowed ifa ≤ b.

There is also a subtyping rule that allows for implicit widening of a reference. Subsumption is only allowed for the
top-level width of a reference.

As in the approach of Liblit and Aiken, [33], we define anexpand function and arobust predicate to facilitate
type checking. Theexpand function widens a type when necessary, and therobust predicate determines when it is
legal to assign to a reference. These functions are shown in Figure13.

The operational semantics ofTi are provided in§B.1.

4.2 Abstract Interpretation

We now present a pointer analysis for theTi language. So that we can ignore any issues of concurrency and also for
efficiency, our analysis is flow-insensitive. We only define the analysis on the single machinem – sinceTi is SPMD,
the results are the same for all machines.

4.2.1 Semantic Domains

We use the following semantic domains in our analysis:

M (the set of machines)

H = {1, ..., h} (the set of possible widths)

A (the set of local addresses)

Id (the set of identifiers)

N (the set of integer literals)

V ar = M × Id (the set of variables)

L (the set of allocation site labels)

T (the set of all types)

G = L×M ×A (the set of global addresses)

V = N ∪G (the set of values)

Store = (G ∪ V ar)→ V (the contents of memory)

Exp (the set of all expressions)

We use the following conventions for naming elements of the above domains:

m ∈M (a machine)

v ∈ V (a value)

σ ∈ Store (a memory state)

a ∈ A (a local address)

l ∈ L (a label)

g = (l, m, a) ∈ G (a global address)

e ∈ Exp (an expression)

We definehier(m,m′) to be the distance between two machinesm andm′.

14

4.2.2 Concrete Domain

Since our analysis is flow-insensitive, we need not determine the concrete state at each point in a program. Instead,
we define the concrete state over the whole program. Since we are doing pointer analysis, we are only interested in
reference values, and since a location can contain different values over the lifetime of the program, we must compute
the set of all possible values for each memory location and variable on machinem. The concrete state thus maps each
memory location and variable to a set of memory locations, and it is a member of the domainCS = (G+Id)→ P(G).

4.2.3 Abstract Domain

For our abstract semantics, we define anabstract locationto correspond to the abstraction of a concrete memory
location. Abstract locations are defined relative to a particular machinem. An abstract location relative to machinem
is a member of the domainAm = L×H – it is identified by both an allocation site and a hierarchy width. An element
a1 of Am is subsumed by another elementa2 if a1 anda2 have the same allocation site, anda2 has a higher width
thana1. The elements ofAm are thus ordered by the following relation:

(l, n1) v (l, n2)⇐⇒ n1 ≤ n2

The ordering thus has height inO(h).
We defineR ⊂ P(Am) to be the maximal subset ofP(Am) that contains no redundant elements. An elementS is

redundantif:

∃x, y ∈ S. x v y ∧ x 6= y

In other words,S is redundant if it contains two related elements ofAm, such that one subsumes the other.
An elementS ∈ R can be represented by ann-digit vectoru, wheren = |L| and the digits are in the range[0, h].

The vector is defined as follows:

u(i) =

{
j if (li, j) ∈ S,

0 otherwise.

The vector has a digit for each allocation site, and the value of the digit is the width of the abstract location inS
corresponding to the site, or 0 if there is none.

We use the following Hoare ordering on elements ofR:

S1 v S2 ⇐⇒ ∀x ∈ S1. ∃y ∈ S2. x v y

The elementS1 is subsumed byS2 if every element inS1 is subsumed by some element inS2. In the vector represen-
tation, the following is an equivalent ordering:

S1 v S2 ⇐⇒ ∀i ∈ {1, ..., |L|}. u1(i) ≤ u2(i)

In this representation,S1 is subsumed byS2 if each digit inS1 is no more than the corresponding digit inS2. The
ordering relation induces a lattice with minimal element corresponding tou⊥(i) = 0, and a maximal element corre-
sponding tou>(i) = h. The maximal chain between⊥ and> is derived by increasing a single vector digit at a time
by 1, so the chain has heighth · |L|+ 1. The height of the lattice is thus inO(h · |L|).

We now define a Galois connection betweenP(G) andR as follows:

γm(S) =
{
(l, m′, a)

∣∣ (l, n) ∈ S ∧ hier(m,m′) ≤ n
}

αm(C) = u
{
S

∣∣ C v γm(S)
}

The concretization of an abstract location(l, n) with respect to machinem is the set of all concrete locations with
the same allocation site and located on machines that are at mostn away fromm. The abstraction with respect tom
of a concrete location(l,m′, a) is an abstract location with the same allocation site and width equal to the distance
betweenm andm′.

Finally, we abstract the concrete domainCS to the following abstract domain, which maps abstract locations and
variables topoints-to setsof abstract locations:

15

AS = (Am + Id)→ R

An elementσA of AS is subsumed byσ′A if the points-to set inσA is subsumed by the set inσ′A for each element in
(Am + Id) . The elements ofAS are therefore ordered as follows:

σA v σ′A ⇐⇒ ∀x ∈ (Am + Id). σA(x) v σ′A(x)

The resulting lattice has height inO(h · |L| ·(|Am|+ |Id|)) = O(h · |L| ·(h · |L|+ |Id|)). Since the number of allocation
sites and identifiers is limited by the size of the input programP , the height is inO(h2 · |P |2).

4.2.4 Abstract Semantics

For each expression inTi, we provide inference rules for how the expression updates the abstract stateσA. The judg-
ments are of the form〈e, σA〉 ⇓ 〈S, σ′A〉, which means that expressione in abstract stateσA can refer to the ab-
stract locationsS and results in the modified abstract stateσ′A. We use the notationσ[g := v] to denote the function
λx. if x = g then v else σ(x). Most of the rules are derived directly from the operational semantics of the language,
provided in§B.1.

The rules for integer and variable expressions are straightforward. Neither updates the abstract state, and the latter
returns the abstract locations in the points-to set of the variable.

〈n, σA〉 ⇓ 〈∅, σA〉 〈x, σA〉 ⇓ 〈σA(x), σA〉

An allocation returns the abstract location corresponding to the allocation site, with width 1.

〈newl τ, σA〉 ⇓ 〈{(l, 1)}, σA〉

The rule for dereferencing is similar to the operational semantics rule, except that all source abstract locations are
simultaneously dereferenced.

〈e, σA〉 ⇓ 〈S, σ′A〉
〈∗e, σA〉 ⇓ 〈

⋃
b∈S σ′A(b), σ′A〉

The rule for sequencing is also analogous to its operational semantics rule.

〈e1, σA〉 ⇓ 〈S1, σ
′
A〉 〈e2, σ

′
A〉 ⇓ 〈S2, σ

′′
A〉

〈e1; e2, σA〉 ⇓ 〈S2, σ
′′
A〉

The rule for variable assignment merely copies the source abstract locations into the points-to set of the target variable.

〈e, σA〉 ⇓ 〈S, σ′A〉
〈x := e, σA〉 ⇓ 〈S, σ′A[x := σ′A(x) t S]〉

The type conversion expression can only succeed if the result is within the specified hierarchical distance, so it narrows
all abstract locations that are outside that distance.

〈e, σA〉 ⇓ 〈S, σ′A〉
〈convert(e, n), σA〉 ⇓ 〈{(l, min(k, n)) | (l, k) ∈ S}, σ′A〉

The SPMD model of parallelism inTi implies that the source expression of thetransmit operation evaluates to
abstract locations with the same labels on both the source and destination machines. The distance between the source
and destination machines, however, is not statically known, so the resulting abstract locations must be assumed to have
the maximum width.

〈e2, σA〉 ⇓ 〈S2, σ
′
A〉 〈e1, σ

′
A〉 ⇓ 〈S1, σ

′′
A〉

〈transmit e1 from e2, σA〉 ⇓ 〈{(l, h) | (l,m) ∈ S1}, σ′′A〉

16

Fig. 17: The assignmentx← y on machine 0 results in the abstract location(l2, 2) being added to the points-to set of
(l1, 1), as shown by the first dashed arrow. The assignment on machine 1 results in the abstract location(l2, 2) being
added to the points-to set of(l1, 2), as shown by the second dashed arrow. The assignment must also be accounted for
on the rest of the machines. (Abstract locations in the figure are with respect to machine 0.)

The rule for assignment through references is the most interesting. Suppose an abstract locationa2 = (l2, 2) is assigned
into an abstract locationa1 = (l1, 1), as in Figure17. Of course, we have to adda2 to the points-to set ofa1. In
addition, sinceTi is SPMD, we have to account for the effect of the same assignment on a different machine. Consider
the assignment on machinem′, wherehier(m,m′) = 2. The locationa1 relative tom corresponds to a locationa′1 =
(l1, 2) relative tom′. The locationa2 can correspond to a concrete location onm′, so its abstraction can bea′2 = (l2, 1)
relative tom′. But it can also correspond to a concrete location onm′′ wherehier(m,m′′) = hier(m′,m′′) = 2,
so its abstraction can also bea′′2 = (l2, 2). But sincea′2 v a′′2 , it is sufficient to assume thata2 corresponds toa′′2 on
m′. From the point of view ofm′ then, the abstract location(l2, 2) should be added to the points-to set of the location
(l1, 2).

In general, whenever an assignment occurs from(l2, n2) to (l1, n1), we have to update not only the points-to set
of (l1, n1) but the sets of all locations corresponding to labell1 and of any width. In§B.2, we show that the proper
update is to add the location(l2,max(n′1, n1, n2)) to the points-to set of each location(l1, n′1). The rule is then

〈e1, σA〉 ⇓ 〈S1, σ
′
A〉 〈e2, σ

′
A〉 ⇓ 〈S2, σ

′′
A〉

〈e1 ← e2, σA〉 ⇓ 〈S2, update(σ′′A, S1, S2)〉
,

with update defined as

update(σ, S1, S2) =
λ(l1, n′1) : L×H .

σ((l1, n′1)) t
{
(l2,max(n′1, n1, n2))

∣∣ (l1, n1) ∈ S1 ∧ (l2, n2) ∈ S2

}
.

4.2.5 Algorithm

The set of inference rules, instantiated over all the expressions in a program and applied in some arbitrary order7,
composes a functionF : AS → AS. Only the two assignment rules affect the input stateσA, and in both rules, the
output consists of a least upper bound operation involving the input state. As a result,F is a monotonically increasing
function, and the least fixed point ofF , F0 = tnFn(λx. ∅), is the analysis result.

The functionF has a rule for each program expression, so it takes time inO(|P |) to apply it8, whereP is the input
program. Since the lattice overAS has height inO(h2 · |P |2), it takes time inO(h2 · |P |3) to compute the fixed point
of F . The running time of the analysis is thus cubic in the size of the input program and quadratic in the height of the
machine hierarchy.

7Since the analysis is flow-insensitive, the order of application is not important.
8We ignore the cost of the join operations here. In practice, points-to sets tend to be small, so the cost of joining them can be neglected.

17

Static Races Detected

10

100

1000

10000

100000

amr gas ft cg mg

Benchmark

R
ac

es
 (L

og
ar

ith
m

ic
 S

ca
le

)

sharing concur feasible feasible+AA1 feasible+AA3

Fig. 18: Number of data races detected at compile-time.

5 Evaluation

We evaluate our concurrency and pointer analyses using two clients: static race detection and enforcing sequential
consistency at the language/compiler level. We use the following set of benchmarks for our evaluation:

• amr [51] (7581 lines) Chombo adaptive mesh refinement suite [5] in Titanium.

• gas [9] (8841 lines): Hyperbolic solver for a gas dynamics problem in computational fluid dynamics.

• ft [17] (1192 lines): NAS Fourier transform benchmark [7] in Titanium.

• cg [17] (1595 lines): NAS conjugate gradient benchmark [7] in Titanium.

• mg[17] (1952 lines): NAS multigrid benchmark [7] in Titanium.

The line counts for the above benchmarks underestimate the amount of code actually analyzed, since all reachable
code in the 37,000 line Titanium and Java 1.0 libraries is also processed.

5.1 Static Race Detection

Using our concurrency and pointer analyses, we built a compile-time data race analysis into the Titanium compiler.
Static information is generally not enough to determine with certainty that two memory accesses compose a race, so
nearly all reported races are false positives. (The correctness of the concurrency and pointer analyses ensure that no
false negatives occur.) We therefore consider a race detector that reports the fewest races to be the most effective.

Figure18compares the effectiveness of five levels of race detection:

• sharing: Type-based alias analysis and Liblit and Aiken’s sharing inference [34] are used to detect potential
races.

• concur: Our basic concurrency analysis (§3.2) is used to eliminate non-concurrent races.

18

Static Fences in Sequentially Consistent Versions

15408149901483417658

29580

0

1000

2000

3000

4000

5000

amr gas ft cg mg

Benchmark

Fe
nc

es

naïve sharing concur feasible feasible+AA1 feasible+AA3

Fig. 19: Number of memory barriers generated at compile-time.

• feasible: Our feasible paths concurrency analysis (§3.3) is used to eliminate non-concurrent races.

• feasible+AA1: A single-level pointer analysis is used to eliminate false aliases.

• feasible+AA3: A three-level pointer analysis is used to eliminate false aliases.

The results show that the concurrency and pointer analyses can eliminate most of the races reported by our detector.
None of the benchmarks benefit significantly from the basic concurrency analysis, but the feasible paths version
significantly reduces the number of races found in two of the benchmarks. The addition of pointer analysis removes
most of the remaining races, with a three-level analysis providing significant benefits over a one-level analysis.

5.2 Sequential Consistency

In order to enforce sequential consistency in Titanium, we insert memory barriers where required in an input program.
These memory barriers can be expensive to execute at runtime, potentially costing an entire roundtrip latency for a
remote memory access. The memory barriers also prevent code motion, so they directly preclude many optimizations
from being performed. The static number of memory barriers generated provides a rough estimate for the amount of
optimization prevented, but the affected code may actually be unreachable at runtime or may not be significant to the
running time of a program. We therefore additionally measure the dynamic number of memory barriers hit at runtime,
which more closely estimates the performance impact of the inserted memory barriers. Finally, we measure the actual
running time of each benchmark on two platforms:

• jacquard.nersc.gov : An Opteron cluster running Linux, with two processors per node clocked at 2.2GHz
and an Infiniband network. Benchmarks were run on four nodes, using one thread per node.

• bassi.nersc.gov : A Power5 cluster running AIX, with eight processors per node clocked at 1.9GHz and
an IBM Federation network. Benchmarks were run on one node, using four threads, each in its own physical
address space.

Execution time is compared to a version of each benchmark compiled using Titanium’s default relaxed memory model.

19

Average Dynamic Fences on Jacquard (4 Nodes, 4 Processors)

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

amr gas ft cg mg

Benchmark

Fe
nc

es
 (L

og
ar

ith
m

ic
 S

ca
le

)

naïve sharing concur feasible feasible+AA1 feasible+AA3

Fig. 20: Average number of memory barriers executed at runtime. Benchmarks were run onjacquard.nersc.gov
using four processors.

Running Time on Jacquard (4 Nodes, 4 Processors)

0

1

2

3

4

5

6

7

8

9

10

amr gas ft cg mg

Benchmark

Ti
m

e
C

om
pa

re
d

to
 R

el
ax

ed

naïve sharing concur feasible feasible+AA1 feasible+AA3

Fig. 21: Execution time onjacquard.nersc.gov using four processors, compared to a relaxed consistency ver-
sion of the code.

20

Running Time on Bassi (1 Node, 4 Processors)

0

2

4

6

8

10

12

14

16

18

amr gas ft cg mg

Benchmark

Ti
m

e
C

om
pa

re
d

to
 R

el
ax

ed

naïve sharing concur feasible feasible+AA1 feasible+AA3

Fig. 22: Execution time onbassi.nersc.gov using four processors, compared to a relaxed consistency version of
the code.

Figure19 compares the number of memory barriers generated for each program using the five different levels of
analysis above, with an additional base level of analysis:

• näıve: Fences are inserted around all heap accesses.

Figure20 compares the resulting dynamic counts at runtime, and Figures21 and22 show the execution time on the
two test platforms.

The results show that our analysis, at its highest precision, is very effective in reducing the numbers of both static
and dynamic memory barriers. In three of the benchmarks, nearly all runtime memory barriers are eliminated, and in
another, the number of memory barriers hit is reduced by a large fraction. Using the most precise analysis, all but one
of the benchmarks perform nearly as well as their relaxed consistency versions.

6 Related Work

There is an extensive literature on compiler and runtime optimizations for parallel machines, including automatically
parallelized programs and optimization of data parallel programs, which in their pure form have a sequential se-
mantics. This includes work on concurrency analysis, race detection, pointer analysis, and enforcement of sequential
consistency. This report itself is an extension of previous work in conjunction with Su and Yelick [27, 28].

6.1 Concurrency Analysis and Race Detection

An extensive amount of work on concurrency analysis has been done for both languages with dynamic parallelism
and SPMD programs. Duesterwald and Soffa presented a data flow analysis to compute thehappened-beforeand
happened-afterrelation for program statements [19]. Their analysis is for detecting races in programs based on the
Ada rendezvous model [49]. Masticola and Ryder developed a more precise non-concurrency analysis for the same
set of programs [35]. The results are used for debugging and optimization. Jeremiassen and Eggers developed a static
analysis for barrier synchronization for SPMD programs with non-textual barriers and used the information to reduce

21

false sharing on cache-coherent machines [26]. Their analysis doesn’t take advantage of barrier alignment or single-
valued expressions, so it isn’t as precise as ours.

Others besides Duesterwald and Soffa and Masticola and Ryder have developed tools for race detection. Flanagan
and Freund presented a static race detection tool for Java based on type inference and checking [20]. Boyapati and
Rinard developed a type system for Java that guarantees that a program is race-free [11]. Tools such as Eraser [43] and
TRaDe [15] detect races at runtime instead of statically. Other static and dynamic race detection schemes have also
been developed [6, 14, 18, 38, 50].

Our work differs from previous work in that we develop an analysis specifically for SPMD programs with textual
barriers. This allows our analysis to be both sound and precise. In addition, our analysis takes advantage of single-
valued expressions, which no previous analysis does.

6.2 Pointer Analysis

The language and type system we presented here are generalizations of those described by Liblit and Aiken [33]. They
defined a two-level hierarchy and used it to produce a constraint-based analysis that infers locality information about
pointers. Later with Yelick, they extended the language and type system to consider sharing of data, and they defined
another constraint-based analysis to infer sharing properties of pointers [34].

Pointer analysis was first described by Andersen [4], and later extended by others to parallel programs. Rugina
and Rinard developed a thread-aware alias analysis for the Cilk multithreaded programming language [41] that is
both flow-sensitive and context-sensitive. Others such as Zhu and Hendren [54] and Hicks [24] have developed flow-
insensitive versions for multithreaded languages. However, none of these analyses consider hierarchical, distributed
machines.

6.3 Sequential Consistency

The memory consistency issue arises in a language with an explicitly parallel semantics and some type of shared
address space. The class of such languages includes Java, UPC, Titanium, and Co-Array Fortran, some of the languages
proposed in the recent HPCS effort, as well as shared memory language extensions such as POSIX Threads and
OpenMP [13, 37, 39, 53].

Shasha and Snir provided some of the foundational work in enforcing sequential consistency from a compiler level
when they introduced the idea ofcycle detection[44]. However, that work was designed for general MIMD parallelism,
limited to straight-line code, and was not designed as a practical static analysis. Midkiff and Padua outlined some of
the implementation techniques that could violate sequential consistency and developed some static analysis ideas,
including a concurrent static single assignment form in a paper by Lee et al. [31]. As part of the Pensieve project,
Lee and Padua exploited properties of fences and synchronization to reduce the number of delays in cycle detection
[32]. The project also includes a Java compiler that takes a memory model as input [47]. More recently, Sura et
al. have shown that cooperating escape, thread structure, and delay set analyses can be used to provide sequential
consistency cheaply in Java [46]. Our work differs from theirs in two primary ways: 1) we take advantage of some
of the synchronization paradigms, such as barriers, that exist in SPMD programs, and 2) our machine targets include
distributed memory architectures where the cost of a memory fence is essentially that of a round-trip communication
across the network.

The earliest implementation work on cycle detection was by Krishnamurthy and Yelick for the restricted case of
SPMD programs [29]. That was done in a simplified subset of the Split-C language and introduced a polynomial time
algorithm for cycle detection in SPMD programs. They also used synchronization analysis to reduce the number of
fences, but their source language did not have the restriction that barriers must match textually and they did not take
advantage of single conditionals. At compile time, they generated two versions of the code, one assuming the barriers
line up and the other one not. At runtime, they switched between the two versions depending on how the barriers were
executed. Our approach does not suffer the same runtime overhead and code bloat that exists in theirs. In addition,
their compiler used only a simple type-based alias analysis.

There has also been work done in the area of reducing the number of fences required to enforce sequential consis-
tency. Liblit, Aiken, and Yelick developed a type system to identify shared data accesses in Titanium programs [34],

22

and for sequential consistency, they only insert a fence at each shared data access identified. Based on our experimen-
tal results in§5, our technique is a significant improvement over theirs in terms of static fence count, dynamic fence
count, and running time of the generated programs.

7 Conclusion

The global address space abstraction is a powerful programming model for shared memory machines, distributed
memory machines, and hybrid mixtures of the two. Prior work has shown the expressive value of these languages [51,
12, 17] and the performance benefits of being able to directly read and write remote memory [8]. In this report, we
presented critical program analyses for concurrency and pointers, necessary for detecting many types of program errors
and enabling optimizations.

We introduced a graph representation of parallel programs with textually aligned barriers and two different con-
currency analyses. The first was a basic concurrency analysis that uses barriers and single-valued expressions, and the
second a more complex one that only explores those execution paths across function calls that can occur in practice.
In addition, we presented a pointer analysis for languages with a hierarchical machine model that matches the current
trend for building large-scale systems.

We also implemented two clients of the analyses in a compiler for the Titanium language. In the first, programs
were analyzed at compile-time to report potential data races. The second was to leverage the analyses to minimize
the cost of guaranteeing a sequentially consistent execution of a parallel program. Both clients benefited significantly
from the analyses, with the former reporting far fewer false data races than without them, and the performance of the
latter approaching that of the default relaxed memory model.

The increasing use of software-exposed parallelism will make parallel languages more common, and the kinds of
analysis presented in this report will be critical to performing optimizations and detecting errors. The ability to per-
form such analyses may affect a language designer’s choice of programming model semantics. Simpler programming
models, such as those that prohibit races, use synchronous communication, or ensure a strong memory model, may
be feasible if accurate analyses can be developed to enable optimizations while ensuring a stronger semantics. The
hierarchical nature of machines at the high end is also increasing, and while three levels is the most exposed in any
of the current PGAS languages, we expect that the desire for control over data layout and increasing complexity of
networks are likely to result in more levels of hierarchy in these machines. Our results indicate that providing a simpler
programming model and exposing the memory hierarchy within the language can balance the desire of programmers
for both simplicity and high performance.

References
[1] A. Aiken and D. Gay. Barrier inference. InProceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, January 1998.

[2] A. Aiken and D. Gay. Memory management with explicit regions. InPLDI ’98: Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, June 1998.

[3] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, S. Ryu, G. L. S. Jr., and S. Tobin-Hochstadt.The Fortress Language Specification, Version
0.866. Sun Microsystem Inc., Feb. 2006.

[4] L. O. Andersen.Program Analysis and Specialization for the C Programming Language. PhD thesis, DIKU, University of Copenhagen, May
1994.

[5] Applied Numerical Algorithms Group (ANAG). Chombo.http://seesar.lbl.gov/ANAG/software.html .

[6] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect of Java without data races. InOOPSLA ’00: Proceedings of the 15th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications, pages 382–400, New York, NY, USA, 2000.
ACM Press.

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel Benchmarks.The International Journal of Supercom-
puter Applications, 5(3):63–73, Fall 1991.

[8] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Optimizing bandwidth limited problems using one-sided communication and overlap.
In 20th International Parallel and Distributed Processing Symposium (IPDPS), Rhodes Island, Greece, 2006. Also available as Lawrence
Berkeley National Lab Tech Report LBNL-59207.

23

http://seesar.lbl.gov/ANAG/software.html

[9] M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.Journal of Computational Physics, 82(1):64–84, May
1989. Lawrence Livermore Laboratory Report No. UCRL-97196.

[10] D. Bonachea. GASNet specification, v1.1. Technical Report UCB/CSD-02-1207, University of California, Berkeley, November 2002.

[11] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: preventing data races and deadlocks. InOOPSLA ’02: Proceed-
ings of the 17th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications, pages 211–230, New
York, NY, USA, 2002. ACM Press.

[12] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi. Productivity Analysis of the UPC Language. InIPDPS, 2004.

[13] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren. Introduction to UPC and language specification. Technical Report
CCS-TR-99-157, IDA Center for Computing Sciences, 1999.

[14] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark. Detecting data races in Cilk programs that use locks. InSPAA ’98:
Proceedings of the tenth annual ACM symposium on Parallel algorithms and architectures, pages 298–309, New York, NY, USA, 1998. ACM
Press.

[15] M. Christiaens and K. De Bosschere. TRaDe, a topological approach to on-the-fly race detection in Java programs. InProceedings of the
Java Virtual Machine Research and Technology Symposium (JVM ’01), April 2001.

[16] Cray Inc.Chapel Specification 0.4, Feb. 2005.

[17] K. Datta, D. Bonachea, and K. Yelick. Titanium performance and potential: an NPB experimental study. InProceedings of the 18th Interna-
tional Workshop on Languages and Compilers for Parallel Computing (LCPC), 2005.

[18] A. Dinning and E. Schonberg. Detecting access anomalies in programs with critical sections. InPADD ’91: Proceedings of the 1991
ACM/ONR workshop on Parallel and distributed debugging, pages 85–96, New York, NY, USA, 1991. ACM Press.

[19] E. Duesterwald and M. Soffa. Concurrency analysis in the presence of procedures using a data-flow framework. InSymposium on Testing,
analysis, and verification, Victoria, British Columbia, October 1991.

[20] C. Flanagan and S. N. Freund. Type-based race detection for Java. InPLDI ’00: Proceedings of the ACM SIGPLAN 2000 conference on
Programming language design and implementation, pages 219–232, New York, NY, USA, 2000. ACM Press.

[21] D. Gay.Barrier Inference. PhD thesis, University of California, Berkeley, May 1998.

[22] D. Gay and A. Aiken. Language support for regions. InProceedings of the ACM SIGPLAN 2001 Conference on Programming Language
Design and Implementation, June 2001.

[23] J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java Language Specification. Addison-Wesley, second edition, 2000.

[24] J. Hicks. Experiences with compiler-directed storage reclamation. InFPCA ’93: Proceedings of the conference on Functional programming
languages and computer architecture, pages 95–105, New York, NY, USA, 1993. ACM Press.

[25] P. N. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit, G. Pike, and K. Yelick. Titanium language reference manual. Technical Report
UCB/CSD-04-1163-x, University of California, Berkeley, September 2004.

[26] T. Jeremiassen and S. Eggers. Static analysis of barrier synchronization in explicitly parallel programs. InProceedings of the IFIP WG10.3
Working Conference on Parallel Architectures and Compilation Techniques, August 1994.

[27] A. Kamil, J. Su., and K. Yelick. Making sequential consistency practical in Titanium. InSupercomputing 2005, November 2005.

[28] A. Kamil and K. Yelick. Concurrency analysis for parallel programs with textually aligned barriers. InProceedings of the 18th International
Workshop on Languages and Compilers for Parallel Computing, October 2005.

[29] A. Krishnamurthy and K. Yelick. Analyses and optimizations for shared address space programs.Journal of Parallel and Distributed
Computations, 1996.

[30] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.IEEE Transactions on Computers,
28(9):690–691, September 1979.

[31] J. Lee, S. Midkiff, and D. Padua. Concurrent static single assignment form and constant propagation for explicitly parallel programs. In
Proceedings of 1999 ACM SIGPLAN Symposium on the Principles and Practice of Parallel Programming, May 1999.

[32] J. Lee and D. Padua. Hiding relaxed memory consistency with compilers. InParallel Architectures and Compilation Techniques, Barcelona,
Spain, September 2001.

[33] B. Liblit and A. Aiken. Type systems for distributed data structures. InProceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, January 2000.

[34] B. Liblit, A. Aiken, and K. Yelick. Type systems for distributed data sharing. InInternational Static Analysis Symposium, San Diego,
California, June 2003.

[35] S. Masticola and B. Ryder. Non-concurrency analysis. InProceedings of the Fourth ACM SIGPLAN Symposium on the Principles and
Practice of Parallel Programming, May 1993.

[36] R. H. B. Netzer and B. P. Miller. What are race conditions?: Some issues and formalizations.ACM Lett. Program. Lang. Syst., 1(1):74–88,
1992.

[37] R. Numwich and J. Reid. Co-Array Fortran for parallel programming. Technical Report RAL-TR-1998-060, Rutherford Appleton Laboratory,
1998.

24

[38] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. InPPoPP ’03: Proceedings of the ninth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 167–178, New York, NY, USA, 2003. ACM Press.

[39] OpenMP specifications. http://www.openmp.org.

[40] T. Reps. Program analysis via graph reachability. InILPS ’97: Proceedings of the 1997 international symposium on Logic programming,
pages 5–19, Cambridge, MA, USA, 1997. MIT Press.

[41] R. Rugina and M. Rinard. Pointer analysis for multithreaded programs. InPLDI ’99: Proceedings of the ACM SIGPLAN 1999 Conference on
Programming Language Design and Implementation, pages 77–90, New York, NY, USA, 1999. ACM Press.

[42] V. Saraswat.Report on the Experimental Language X10, Version 0.41. IBM Research, Feb. 2006.

[43] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a dynamic data race detector for multithreaded programs.ACM
Trans. Comput. Syst., 15(4):391–411, 1997.

[44] D. Shasha and M. Snir. Efficient and correct execution of parallel programs that share memory.ACM Trans. Program. Lang. Syst., 10(2):282–
312, 1988.

[45] Silicon Graphics. CF90 co-array programming manual. Technical Report SR-3908 3.1, Cray Computer, 1994.

[46] Z. Sura, X. Fang, C. Wong, S. Midkiff, and D. Padua. Compiler techniques for high performance sequentially consistent Java programs. In
Proceedings of the 2005 ACM SIGPLAN Symposium on the Principles and Practice of Parallel Programming, Chicago, Illinois, June 2005.

[47] Z. Sura, C. Wong, X. Fang, J. Lee, S. Midkiff, and D. Padua. Automatic implementation of programming language consistency models. In
Proceedings of the 15th Workshop on Workshop on Languages and Compilers for Parallel Computing, College Park, Maryland, July 2002.

[48] The UPC Consortium.UPC Language Specifications, Version 1.2, May 2005.

[49] United States Department of Defense. Reference manual for the Ada programming language. Technical Report ANSI/MIL-STD-1815A,
Washington, D.C., January 1983.

[50] C. von Praun and T. R. Gross. Static conflict analysis for multi-threaded object-oriented programs. InPLDI ’03: Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and implementation, pages 115–128, New York, NY, USA, 2003. ACM Press.

[51] T. Wen and P. Colella. Adaptive mesh refinement in titanium. InProceedings of the 19th International Parallel and Distributed Processing
Symposium (IPDPS), 2005.

[52] J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias analysis using binary decision diagrams. InProceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and Implementation, 2004.

[53] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken.
Titanium: A high-performance Java dialect. InWorkshop on Java for High-Performance Network Computing, Stanford, California, February
1998.

[54] Y. Zhu and L. J. Hendren. Communication optimizations for parallel C programs. InPLDI ’98: Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementation, pages 199–211, New York, NY, USA, 1998. ACM Press.

A Concurrency Analysis Details

In this appendix, we provide soundness proofs for the concurrency algorithms in§3. In addition, we discuss some of
the optimizations our implementation performs in order to reduce the running time of the analyses.

A.1 Soundness

We prove the theorems given in§3, and the correctness of the concurrency analyses.

A.1.1 Theorem3.4

In order to prove Theorem3.4, we need to first prove Lemma3.6:

Proof (of Lemma3.6). Supposea andb are never in the same code phase. Then they are always preceded by two
different barriers. Consider arbitrary occurrences ofa andb in any program execution in which they both occur. (If
one or both don’t occur, then they trivially don’t run concurrently.) LetBa andBb be the barriers precedinga andb,
respectively. Since every thread executes the same set of barriers, eitherBa precedesBb or Bb precedesBa. Sincea
occurs afterBa but before any other barrier, andb occurs afterBb but before any other barrier, this implies thata and
b are separated by a barrier. Thus,a andb cannot run concurrently, since a barrier prevents the code before it and after
it from executing concurrently. ut

We can now prove Theorem3.4:

25

Proof (of Theorem3.4). Supposea andb can run concurrently. By Lemma3.6, a andb must be in the same code
phaseS. By Definition3.5, there must be program flows from the initial barrierBS to a andb that do not go through
barriers. There are three cases:

Case 1:There is a program flow froma to b in S. This means the control flow graph of the program must con-
tain a path from the node fora to the node forb that does not pass through a barrier. SinceG contains all nodes and
edges of the control flow graph except those corresponding to barriers, it also contains such a path, sob is reachable
from a.

Case 2:There is a program flow fromb to a in S. This case is analogous to the one above.

Case 3:There is no program flow either froma to b or from b to a in S. Since there is a flow fromBS to a and
from BS to b, a andb must be in different branches of a conditionalC. Since only one branch of a single conditional
can run,C must be a non-single conditional in order fora andb to run concurrently. Without loss of generality, leta
be in the first branch, andb be in the second. SinceC is non-single, it cannot contain a barrier, and the end of the first
branch is reachable inG from a without hitting a barrier. Similarly,b is reachable from the beginning of the second
branch without executing a barrier. SinceG contains a cross edge from the first branch ofC to the second, this implies
that there is a path froma to b in G that does not pass through a barrier. ut

A.1.2 Method Contexts

The feasible paths algorithm in§3.3 only visits each method in a single context. The following implies that this, in
addition to visiting each method in no context, is sufficient:

Theorem A.1. Ignoring the effect of the arguments, the set of expressions that may be executed in a call to a method
f is the same regardless of the context in whichf is called.

Proof (by Induction Over the Function Call Depth).
Base case:The execution off makes no method calls. Then the call tof can execute at most those expressions that
are contained inf and reachable from its entry regardless of the calling context.
Inductive step:The execution off makes method calls. By the inductive hypothesis9, each method call inf can
transitively execute the same expressions independent of the context. In addition, the call tof can execute exactly
those expressions that are contained inf and reachable from its entry. The call tof thus can execute the same set of
expressions regardless of context. ut

A.1.3 Algorithm 3.8

We prove the correctness of Algorithm3.8, used by the feasible paths analysis.

Theorem A.2. Algorithm3.8marks all methods that can complete using any number of stack frames.

Proof. Suppose there are some methods that can complete but that Algorithm3.8does not find. Out of these methods,
let f be the one that can complete with the minimum number of stack framesj. In order forf to requirej frames
to complete, there must be an execution path throughf that only calls methods that require at mostj − 1 frames to
complete. These methods must all be marked, sincef is the minimum method that isn’t marked. Leti be the iteration
in which the last of these methods is marked. Since a method is marked in this iteration, loop 3 will iterate at least
once more. Sincef now has a path in which it only calls marked methods,f will be marked in the(i + 1)th iteration.
This is a contradiction, so Algorithm3.8marks all methods that can complete. ut

9In order for induction be be applicable, the function call depth inf must be finite. It is reasonable to assume that this is always the case, since
in practice, an infinite function call depth is impossible due to finite memory limits.

26

A.1.4 Algorithm 3.9

We now prove that Algorithm3.9, which is used by the feasible paths analysis, only follows feasible paths.

Theorem A.3. Algorithm3.9does not follow any infeasible paths.

Proof. Consider an arbitrary infeasible pathp. In order forp to be infeasible, the labels alongp must form a string in
which an open parenthesis(α is closed by a non-matching parenthesis)β . Consider the execution of Algorithm3.9on
this path. An open parenthesis is pushed onto the the stacks when it is encountered, so before any close parentheses
are encountered, the top of the stack is the most recently opened parenthesis. A close parenthesis causes the top of the
stack to be popped, so in general, the top of the stack is the most recently opened parenthesis that has not yet been
closed. Now considers when the label)β is reached. The symbol(α must be on the top ofs, since)β closes it. But
Algorithm 3.9checks the top of the stack against the newly encountered label, and since they don’t match, it does not
proceed alongp. ut

A.2 Optimizations

We perform a few optimizations to decrease the running time of our implementation.

• Dynamic method calls: As shown in§3.1.1, we rewrite dynamic method calls as conditionals. In order to
maintain correctness, a conditional branch must be added for each possible target of the call. Our implementation
uses pointer analysis to determine the possible targets, reducing the number of required branches.

• Private data: Private data can only be accessed by the thread that created them. Since a race condition re-
quires simultaneous access by multiple threads, accesses to private data cannot occur in a race condition. Our
implementation ignores all such accesses.

• Graph compaction: The control flow graph contains many nodes that are irrelevant to our analysis. Since our
concurrency analyses are quadratic in the number of graph nodes, it is beneficial to remove these nodes before
the analysis. Our experiments show that on average, about 95% of nodes can be removed.

B Pointer Analysis Details

In this appendix, we elaborate on the pointer analysis in§4. We provide the operational semantics forTi and prove the
soundness of the most complicated inference rule in§4.2.4. In addition, we discuss some implementation details of
the analysis and some more applications that can benefit from it.

B.1 Concrete Operational Semantics

In this section we present the sequential operational semantics ofTi . We ignore concurrency in defining the semantics,
since it is not essential to our flow-insensitive analysis.

Judgments in our operational semantics have the form〈e,m, σ〉 ⇓ 〈v, σ′〉, which means that expressione executed
on machinem in a global stateσ evaluates to the valuev and results in the new stateσ′. As in §4.2.4, we use the
notationσ[g := v] to denote the functionλx. if x = g then v else σ(x).

The rules for integer and variable expressions are trivial.

〈n, m, σ〉 ⇓ 〈n, σ〉 〈x, m, σ〉 ⇓ 〈σ(x), σ〉

For allocations, we introduce a specialnull value to represent uninitialized pointers. The result of an allocation is an
address on the local machine that is guaranteed to not already be in use.

〈newl τ,m, σ〉 ⇓ 〈(l,m, a), σ[(l,m, a) := null]〉
(a is fresh onm)

27

The rule for dereferencing is simple, except that it is illegal to dereference anull pointer.

〈e,m, σ〉 ⇓ 〈g, σ′〉 g 6= null

〈∗e,m, σ〉 ⇓ 〈σ′(g), σ′〉

The rule for variable assignment is also simple.

〈e,m, σ〉 ⇓ 〈v, σ′〉
〈x := e,m, σ〉 ⇓ 〈v, σ′[x := v]〉

The rule for assignment through a reference is the combination of a dereference and a normal assignment.

〈e1,m, σ〉 ⇓ 〈g, σ1〉 〈e2,m, σ1〉 ⇓ 〈v, σ2〉 g 6= null

〈e1 ← e2,m, σ〉 ⇓ 〈v, σ2[g := v]〉

The rule for sequencing is as expected.

〈e1,m, σ〉 ⇓ 〈v1, σ1〉 〈e2,m, σ1〉 ⇓ 〈v2, σ2〉
〈e1; e2,m, σ〉 ⇓ 〈v2, σ2〉

The type conversion expression makes use of thehier function, which returns the hierarchical distance between two
machines. The conversion is only allowed if that distance is no more than the target type.

〈e,m, σ〉 ⇓ 〈g = (l,m′, a), σ′〉 hier(m,m′) ≤ n

〈convert(e, n),m, σ〉 ⇓ 〈g, σ′〉

In thetransmit operation, the expression is evaluated on the given machine.

〈e2,m, σ〉 ⇓ 〈n, σ2〉 n ∈M 〈e1, n, σ2〉 ⇓ 〈v, σ1〉
〈transmit e1 from e2,m, σ〉 ⇓ 〈v, σ1〉

B.2 Soundness

Most of the abstract inference rules are derived directly from the operational semantics, so their correctness is obvious.
The rule for assignment through a reference, however, is nontrivial, so we prove its soundness here.

Let am
i represent the abstract locationai with respect to machinem. Let nm represent a widthn with respect to

m.
Consider an assignmente1 ← e2. Let m be the reference machine for the analysis. Without loss of generality,

assume thate1 evaluates to the lone abstract locationam
1 = (l1, nm

1), and thate2 evaluates toam
2 = (l2, nm

2). Consider
the execution of this assignment on the following machines:

• On machinesm′ such thathier(m,m′) ≤ nm
1 . This implies that the(nm

1 − 1)th ancestor of eachm′ in the
machine hierarchy is the same as that ofm. As a result, abstract locations of width at leastn1 are the same with
respect to bothm andm′. In particular,am′

1 = am
1 , so the assignment on any machine can target any concrete

location inam
1 .

Now supposenm
2 < nm

1 . Then theam′

2 are not equivalent. However, note thatam′

2 contains the concrete locations
(l2,m′, a) for anya. Considering the assignment on all machinesm′, the concrete locations inam

1 can receive
any of the source concrete locations(l2,m′, a) for all m′ anda. This set of source locations corresponds exactly
to the abstract locationam

2′ = (l2, nm
1).

Suppose instead thatnm
2 ≥ nm

1 . Then the machinesm′ all agree on the setam′

2 = am
2 . Thus, regardless of which

machine the assignment is executed on, the source locations correspond exactly toam
2 .

In either case, any of the concrete locations corresponding toam
1 can now point to any of the concrete locations

corresponding toam
2′ = (l2,max(nm

1 , nm
2)). To capture this in the abstract inference,am

2′ must be added to
the points-to set ofam

1 . For consistency,am
2′ must also be added to the points-to set of any abstract location

28

am
1′ v am

1 , since any of the concrete locations corresponding toam
1′ can point to any of the concrete locations

corresponding toam
2′ .

Thus, the abstract locationam
2′ = (l2,max(nm

1 , nm
2)) must be added to the points-to set of anyam

1′ = (l1, nm
1′)

such thatnm
1′ ≤ nm

1 .

• On a machinem′, wherehier(m,m′) > nm
1 . The set of concrete locations corresponding toam′

1 all reside on
machines a distance ofnm

1′ = hier(m,m′) away from machinem. Thus,am′

1 v am
1′ , wheream

1′ = (l1, nm
1′).

Now supposenm
2 < nm

1′ . Then all the concrete locations corresponding toam′

2 reside at a distance ofnm
1′ from

machinem, so thatam′

2 v am
2′ , wheream

2′ = (l2, nm
1′). Thus, the source locations can be soundly approximated

by am
2′ .

Suppose instead thatnm
2 ≥ nm

1′ . Thenm andm′ agree onam′

2 = am
2 , so the source locations correspond toam

2 .

In either case, some of the concrete locations corresponding toam
1′ can now point to some of the concrete lo-

cations corresponding toam
2′ = (l2,max(nm

1′ , nm
2)). Soundness can be maintained, though precision lost, if the

analysis assumes that any concrete location corresponding toam
1′ can point to any concrete location correspond-

ing toam
2′ . Thus,am

2′ should be added to the points-to set ofam
1′ .

Now consider an abstract locationam
1′′ = (l1, nm

1′′), wherenm
1′′ < nm

1′ . All concrete locations represented byam
1′′

reside less than a distance ofnm
1′ away fromm. Since all concrete locations corresponding toam′

1 reside at a
distance ofnm

1′ from m, the abstract locationsam
1′′ andam′

1 do not intersect. Thus, none of the concrete locations
in am

1′′ are targeted by the assignment, so its points-to set does not need to be updated.

Thus, the abstract locationam
2′ = (l2,max(nm

1′ , nm
2)) must be added to the points-to set of eacham

1′ = (l1, nm
1′)

such thatnm
1′ > nm

1 .

Summarizing over all possibilities, we obtain the rule that the abstract locationam
2′ = (l2,max(nm

1′ , nm
1 , nm

2)) must
be added to the points-to set of anyam

1′ = (l1, nm
1′). This corresponds exactly to the update rule provided in§4.2.4.

B.3 Implementation

We have implemented a prototype of the pointer analysis in the Titanium compiler. For evaluation purposes, we
implemented three variants of the analysis, with one, two, and three levels of hierarchy. The single-level analysis
combines all three levels and cannot be used for either locality or sharing inference. In two-level analysis, level 1
remains separate while levels 2 and 3 are combined. Level 1 must be separate in order to perform sharing analysis,
and this separation still allows locality inference, though with less precision than combining levels 1 and 2. Finally,
the three-level analysis separates all three levels, providing the most precise results.

B.3.1 Titanium Features

TheTi language is much simpler than Titanium, and certain Titanium features require special treatment:

• types: Objects in Titanium have types, so the corresponding abstract locations are also typed.

• fields: Objects can have multiple fields, so an abstract location must have points-to sets for each of its fields.

• arrays: Arrays can have multiple entries. For simplicity, the analysis makes no attempt to distinguish between
the different entries of an array.

• method calls: Methods may have parameters, return values, and athis value. The analysis considers each of
these to be variables, and the result of a method call is the set of abstract locations corresponding to its return
variable.

• dynamic dispatch: A method call on an object may dispatch to different targets at runtime. The analysis can
compute a conservative but precise estimate of the possible dispatch targets by examining the types of the
abstract locations corresponding to the source object.

29

• native code: Native methods are handled conservatively for the most part. However, the analysis assumes that
a native method does not violate type safety, and that it does not modify the fields of an object in certain ways.
Native library methods are treated specially by the analysis if they violate these assumptions.

B.3.2 Optimizations

A handful of optimizations were applied to the pointer analysis, focusing on increasing functionality over efficiency.
Execution time can likely be improved drastically by using binary decision diagrams [52].

B.3.2.1 Reachability

Titanium is to a large extent backwards compatible with Java, providing most of its language features and much of its
library. The typical Titanium program uses only a small portion of the Java library, so analyzing the entire library is
unnecessary. The pointer analysis implementation only analyzes those methods that are reachable from the program
entry point and static initializers. It does so by marking themain() method and static initializers reachable, and the
rest of the methods unreachable. When the analysis encounters a call to an unreachable method, it makes the method
reachable and proceeds to analyze it. This is continued until a fixed point is reached.

B.3.2.2 Lazy Creation of Abstract Locations

Theoretically, the pointer analysis requiresA · h abstract locations, whereA is the number of allocation sites andh is
the number of levels in the analysis. However, if a particular thread-local abstract location is never leaked beyond its
creator thread, the analysis never uses the wider versions of the location. The implementation takes advantage of this
fact by only creating the wider counterparts on demand if the thread-local version is leaked.

B.3.3 Performance

Though our implementation is not as optimized as possible, its performance still demonstrates some interesting results.
As expected, the reachability optimization is very effective, decreasing execution time by an average of almost 70%.
The performance difference between one, two, and three levels of hierarchy is nonexistent, with all three averaging
0.85 seconds on a test benchmark when run on a 2.4GHz Pentium 4. This validates our decision to allow an arbitrary
number of levels in the analysis, since execution time would increase linearly with the number of levels if a two-level
analysis was used multiple times instead.

B.4 Applications

The pointer information computed in§4.2can be applied to multiple analyses and optimizations for parallel programs.
We show how to apply it to two clients, locality inference and sharing inference.

B.4.1 Locality Inference

Pointer information can be used to infer an upper bound on the width of a particular reference or expression. All
referents of an expression must be contained within its width, so if an expressione of reference type evaluates to the
abstract setS, an upper bound on its width is:

wupb = max{n | (l, n) ∈ S}

A reference islocal if it can only be to the same physical address space as the source thread. In the two-level pointer
analysis, a reference is local if its width is bounded from above by 1, while in the three-level analysis, it is local if its
width is bounded by 2.

30

B.4.2 Sharing Inference

An object in a parallel program isprivate if it is never leaked beyond its source thread. A reference is private if it
can only refer to private objects. As described in§B.3.2, if an abstract location can be leaked, our pointer analysis
implementation creates wide versions of it. Thus, an abstract location must be private if it has no wide counterparts,
and a variable or expression is private if it evaluates to an abstract set that only contains private locations. Note that
this inference is independent of the number of levels in the analysis hierarchy, as long as level 1 is separate from the
rest of the levels in the analysis.

31

	1 Introduction
	2 Background
	2.1 Titanium
	2.1.1 Textually Aligned Barriers
	2.1.2 Memory Hierarchy

	2.2 Applications
	2.2.1 Static Race Detection
	2.2.2 Sequential Consistency

	3 Concurrency Analysis
	3.1 Analysis Background
	3.1.1 Intermediate Language
	3.1.2 Control Flow Graphs

	3.2 Basic Analysis
	3.3 Feasible Paths
	3.3.1 Bypass Edges
	3.3.2 Feasible Search
	3.3.3 Feasible Concurrent Expressions

	4 Pointer Analysis
	4.1 Analysis Background
	4.1.1 Machine Structure
	4.1.2 Language

	4.2 Abstract Interpretation
	4.2.1 Semantic Domains
	4.2.2 Concrete Domain
	4.2.3 Abstract Domain
	4.2.4 Abstract Semantics
	4.2.5 Algorithm

	5 Evaluation
	5.1 Static Race Detection
	5.2 Sequential Consistency

	6 Related Work
	6.1 Concurrency Analysis and Race Detection
	6.2 Pointer Analysis
	6.3 Sequential Consistency

	7 Conclusion
	A Concurrency Analysis Details
	A.1 Soundness
	A.1.1 Theorem 3.4
	A.1.2 Method Contexts
	A.1.3 Algorithm 3.8
	A.1.4 Algorithm 3.9

	A.2 Optimizations

	B Pointer Analysis Details
	B.1 Concrete Operational Semantics
	B.2 Soundness
	B.3 Implementation
	B.3.1 Titanium Features
	B.3.2 Optimizations
	B.3.2.1 Reachability
	B.3.2.2 Lazy Creation of Abstract Locations

	B.3.3 Performance

	B.4 Applications
	B.4.1 Locality Inference
	B.4.2 Sharing Inference

